cosx=-4/5
x∈(π,3π/2)
sinx=-√[1-(-4/5)^2]=-3/5
所以[1+tan(x/2)]/[1-tan(x/2)]
=[cos(x/2)+sin(x/2)]/[cos(x/2)-sin(x/2)](分子分母同时乘以cos(x/2))
=[cos(x/2)+sin(x/2)]^2/[cos(x/2)-sin(x/2)][cos(x/2)+sin(x/2)]
=(1+sinx)/cosx
=(1-3/5)/(-4/5)
=-1/2
如果不懂,请Hi我,祝学习愉快!
cosx=-4/5
x∈(π,3π/2)
sinx=-√[1-(-4/5)^2]=-3/5
所以[1+tan(x/2)]/[1-tan(x/2)]
=[cos(x/2)+sin(x/2)]/[cos(x/2)-sin(x/2)](分子分母同时乘以cos(x/2))
=[cos(x/2)+sin(x/2)]^2/[cos(x/2)-sin(x/2)][cos(x/2)+sin(x/2)]
=(1+sinx)/cosx
=(1-3/5)/(-4/5)
=-1/2
如果不懂,请Hi我,祝学习愉快!