问题能说详细点吗?要求什么?
三角形内角和:已知△ABC,求证∠BAC+∠ABC+∠ACB=180°
证明:(1)过A作MN‖BC
则∠MAB=∠B,∠NAC=∠C
即∠BAC+∠ABC+∠ACB=∠A+∠MAB+∠NAC
因MN是过A的直线,所以
∠A+∠MAB+∠NAC=180°
所以∠BAC+∠ABC+∠ACB=180°
方法(2)延长BC至D,过C作CE‖AB
则∠ACE=∠ECD(内错角),∠ECD=∠B(同位角)
所以∠BAC+∠ABC+∠ACB=∠ACE+∠ACB+∠ECD
因CD是BC的延长线,所以B,C,D三点共线
所以∠ACE+∠ACB+∠ECD=180°
即∠BAC+∠ABC+∠ACB=180°