函数y=sinwx(w>0)在区间[0,1]内恰好有50个最大值,求W的取值范围
解析:∵函数f(x)=sin(wx)在区间[0,1]内恰好有50个最大值
又函数f(x)初相为0,∴当x由0开始变化时,处于上升沿,即f(x)增大,距离0最近的是最大值;两个相邻最大值之间相差一个周期T
在区间[0,1]内恰有50个周期,则T=1/50==>w=2π/(1/50)=100π
第51周的最大值
50T+T/4>1==>T>1/(201/4)==>T>4/201==>w=197π/2
∴197π/2
函数y=sinwx(w>0)在区间[0,1]内恰好有50个最大值,求W的取值范围
解析:∵函数f(x)=sin(wx)在区间[0,1]内恰好有50个最大值
又函数f(x)初相为0,∴当x由0开始变化时,处于上升沿,即f(x)增大,距离0最近的是最大值;两个相邻最大值之间相差一个周期T
在区间[0,1]内恰有50个周期,则T=1/50==>w=2π/(1/50)=100π
第51周的最大值
50T+T/4>1==>T>1/(201/4)==>T>4/201==>w=197π/2
∴197π/2