limf(x)/x^5=lim(x-(a+b*e^(x^2))*sin x)/x^5
=lim(x-(a+b*e^(x^2))*x)/x^5 (sin x与x是等价无穷小)
=lim(1-(a+b*e^(x^2)))/x^4 ①
=lim(2*x*b*e^(x^2))/(4*x^3) (洛必塔法则)
=lim(2*b*e^(x^2))/(4*x^2) (约掉x)
=lim(4*x*b*e^(x^2))/(8*x) (洛必塔法则)
=lim(b*e^(x^2))/2=b/2=1(代入x=0)
∴ b=2
根据①式有:
∵ (1-(a+b*e^(x^2)))与x^4是等价无穷小
所以1-(a+b*e^(0^2))=0 ∴1=a+b
a=-1