解题思路:(1)先求出函数定义域x∈(-∞,0)∪(0,+∞),再根据奇函数的定义,f(-x)=-f(x)在定义域内为恒等式,以此求出a的值
(2)由反函数解析式求法,求出f-1(x),再根据函数值求法求出f-1(x+1),最后再由反函数解析式求法,求出y=g(x)的解析式并求其值域;
(3)将g2(x)+2g(x)+t•g(x)>-2中,两边同除以g(x) 将 t进行分离,转化成t与新生成函数的最值比较.
(1)∵f(x)的定义域为(-∞,0)∪(0,+∞)关于原点对称,任取x∈(-∞,0)∪(0,+∞),则f(−x)=a•2−x+a2−22−x−1=(a2−2)2x+a1−2x=−a•2x+a2−22x−1(2分)∴a2-2=a,解此方程可得:a=2或a=-1(...
点评:
本题考点: 函数恒成立问题;函数奇偶性的性质;反函数.
考点点评: 本题是函数与不等式的结合,主要考查了函数奇偶性的定义、反函数求解、等式、不等式恒成立问题.涉及到分离参数,分类讨论,基本不等式、函数单调性求最值等知识和数学思想方法.是高中数学基础知识、基本思想方法的有机融合和良好载体,值得细心解答与品位.