tanA+tanB=4
tanAtanB=-2
tan(A+b)=(tanA+tanB)/(1-tanAtanB)=4/3
原式
=[cos^2(a+b)+2sin(a+b)cos(a+b)-2sin^2(a+b)]/[cos^2(a+b)+sin^2(a+b)]
=[1+2tan(a+b)-2tan^2(a+b)]/[1+tan^2(a+b)] (两边同除cos^2(a+b))
=1/25
tanA+tanB=4
tanAtanB=-2
tan(A+b)=(tanA+tanB)/(1-tanAtanB)=4/3
原式
=[cos^2(a+b)+2sin(a+b)cos(a+b)-2sin^2(a+b)]/[cos^2(a+b)+sin^2(a+b)]
=[1+2tan(a+b)-2tan^2(a+b)]/[1+tan^2(a+b)] (两边同除cos^2(a+b))
=1/25