因为f(x)=ax^3/3-3x^2/2+(a+1)x+1,所以f'(x)=ax^2-3x+(a+1)
(1)f'(1)=a-3+(a+1)=0,得a=1
(2)由f'(x)>x^2-x-a+1得ax^2-3x+(a+1)>x^2-x-a+1,化简有a>(x^2+2x)/(x^2+2)
因为此式对于任意的a∈(0,+∞)成立,所以(x^2+2x)/(x^2+2)≤0,解得x的取值范围是[-2,0]
因为f(x)=ax^3/3-3x^2/2+(a+1)x+1,所以f'(x)=ax^2-3x+(a+1)
(1)f'(1)=a-3+(a+1)=0,得a=1
(2)由f'(x)>x^2-x-a+1得ax^2-3x+(a+1)>x^2-x-a+1,化简有a>(x^2+2x)/(x^2+2)
因为此式对于任意的a∈(0,+∞)成立,所以(x^2+2x)/(x^2+2)≤0,解得x的取值范围是[-2,0]