f(x)=sinx/2cosx/2+√3cos²x/2
=1/2*sinx+√3/2*(1+cosx)
=1/2*sinx+√3/2*cosx+√3/2
=sinxcosπ/3+cosxsinπ/3+√3/2
=sin(x+π/3)+√3/2
T=2π/1=2π
f(x)=sinx/2cosx/2+√3cos²x/2
=1/2*sinx+√3/2*(1+cosx)
=1/2*sinx+√3/2*cosx+√3/2
=sinxcosπ/3+cosxsinπ/3+√3/2
=sin(x+π/3)+√3/2
T=2π/1=2π