解题思路:当CD为斜边上的高时,CD最短,从而水渠造价最低,根据已知条件可将CD的长求出,在Rt△ACD中运用勾股定理可将AD边求出.
当CD为斜边上的高时,CD最短,从而水渠造价最低,
∵∠ACB=90°,AC=80米,BC=60米,
∴AB=
AC2+BC2=
602+802=100米,
∵CD•AB=AC•BC,即CD•100=80×60,
∴CD=48米,
∴在Rt△ACD中AC=80,CD=48,
∴AD=
AC2−CD2=
802−482=64米,
所以,D点在距A点64米的地方,水渠的造价最低,其最低造价为480元.
点评:
本题考点: 勾股定理的应用.
考点点评: 本题的关键是确定D点的位置,在运算过程中多次用到勾股定理.