与“平行线分线段成比例”有关的初中数学题

4个回答

  • 证明:以A为坐标原点,AC为x轴正半轴做直角坐标系,设A(0,0),C(x,0),B(m,n),O(p,q),则M((m+x)/2,n/2),利用A、O、M三点共线,有qn-pm-px=0,即q=(pm+px)/n.设D(r,0),利用B、O、D三点共线,有[(pm+px)/x)/(p-r)]=n(m-r) 解得r=(m^2+mx-n^2)/(m+x-n),即D((m^2+mx-n^2)/(m+x-n),0),同理可解出E点坐标,求出DE和BC斜率相等即可.