计算行列式d=|a,b,b,...,b b,a,b,...,b a,a,b,...,a ...,...,...,...,

1个回答

  • 解: Dn =

    a b b ... b+0

    b a b ... b+0

    a a b ... a+0

    ... ...

    a a a ... a+(b-a)

    按第n列分拆, Dn =

    a b b ... b

    b a b ... b

    a a b ... a

    ... ...

    a a a ... a

    + (b-a)Dn-1

    (所有列减第n列, 化为上三角行列式)

    = (b-a)Dn-1 + a(a-b)^2(b-a)^(n-3)

    = a(b-a)^(n-1) + (b-a)Dn-1

    -- 迭代

    = a(b-a)^(n-1) + (b-a)[a(b-a)^(n-2) + (b-a)Dn-2]

    = 2a(b-a)^(n-1) + (b-a)^2Dn-2

    = ...

    = (n-4)a(b-a)^(n-1) + (b-a)^(n-4)D4

    = (n-4)a(b-a)^(n-1) + (b-a)^(n-4)[-(b-a)^4]

    = [(n-3)a-b](b-a)^(n-1)

    注:

    n>=4 时成立.

    D3 = -b*(a - b)^2

    D4 = -(a - b)^4

    D5 = (2*a - b)*(a - b)^4

    D6 = -(3*a - b)*(a - b)^5