p,q是方程的两根,所以pq=-1,p+q=1
且 p^2-p-1=0,即 p^2=p+1
p^4=p^2+2p+1=3p+2
q^2=q+1
q^3=q^2+q=2q+1
所以
pq^4-p^5q+5q
=-q^3+p^4+5q
=-(2q+1)+3p+2+5q
=3(p+q)+1
=4
p,q是方程的两根,所以pq=-1,p+q=1
且 p^2-p-1=0,即 p^2=p+1
p^4=p^2+2p+1=3p+2
q^2=q+1
q^3=q^2+q=2q+1
所以
pq^4-p^5q+5q
=-q^3+p^4+5q
=-(2q+1)+3p+2+5q
=3(p+q)+1
=4