(1)根据题意得:
1
n(n+1) =
1
n -
1
n+1 ;
(2)∵
1
x(x+1) +
1
(x+1)(x+2) +
1
(x+2)(x+3) +
1
(x+3)(x+4) +
1
(x+4)(x+5) =
1
x -
1
x+1 +
1
x+1 -
1
x+2 +
1
x+2 -
1
x+3 +
1
x+3 -
1
x+4 +
1
x+4 -
1
x+5 =
1
x -
1
x+5 ,
∴
1
x -
1
x+5 =
2x-1
x(x+5) ,
方程的两边同乘x(x+5),得:x+5-x=2x-1,
解得:x=3.
检验:把x=3代入x(x+5)=24≠0.
∴原方程的解为:x=3.