an+1/an=n/(n+2)
an/an-1=(n-1)/(n+1)
an-1/an-2=(n-2)/n
.
.
.
a3/a2=2/4
a2/a1=1/3
将以上各式相乘,得
(an/an-1)*(an-1/an-2)*...*(a3/a2)*(a2/a1)*a1 =(n-1)/(n+1)*(n-2)/n*...*2/4*1/3*2k,可以推得an=4/(n+1)(n+2)
an+1/an=n/(n+2)
an/an-1=(n-1)/(n+1)
an-1/an-2=(n-2)/n
.
.
.
a3/a2=2/4
a2/a1=1/3
将以上各式相乘,得
(an/an-1)*(an-1/an-2)*...*(a3/a2)*(a2/a1)*a1 =(n-1)/(n+1)*(n-2)/n*...*2/4*1/3*2k,可以推得an=4/(n+1)(n+2)