根据定义知:
x1+x2+...+xn=n*x拔
S^2=[(x1-x拔)^2+(x2-x拔)^2...+(xn-x拔)^2]÷n
=[x1²+x2²+···xn²+n*x拔^2-2x拔*(x1+x2+...+xn)]÷n
=[x1²+x2²+···xn²+n*x拔^2-2x拔*nx拔)]÷n
=[x1²+x2²+···xn²-n*x拔^2]÷n
=(x1²+x2²+···xn²)÷n-x拔²
根据定义知:
x1+x2+...+xn=n*x拔
S^2=[(x1-x拔)^2+(x2-x拔)^2...+(xn-x拔)^2]÷n
=[x1²+x2²+···xn²+n*x拔^2-2x拔*(x1+x2+...+xn)]÷n
=[x1²+x2²+···xn²+n*x拔^2-2x拔*nx拔)]÷n
=[x1²+x2²+···xn²-n*x拔^2]÷n
=(x1²+x2²+···xn²)÷n-x拔²