解题思路:(1)求出A中函数的定义域确定出A,求出B中函数的值域确定出B,根据全集R求出B的补集,找出A与B补集的交集即可;
(2)求出C中不等式的解集表示出C,根据A与C交集为C得到C为A的子集,即可确定出a的范围.
(1)由A中的函数y=log2(x-1),得到x-1>0,即x>1,
∴A=(1,+∞),
由B中的函数y=x2+2x+3=(x+1)2+2≥2,得到B=[2,+∞),
∴∁RB=(-∞,2),
则A∩(∁RB)=(1,2);
(2)集合C中的不等式解得:x>a,即C=(a,+∞),
∵A∩C=C,
∴C⊆A,
∴a≥1.
点评:
本题考点: 交、并、补集的混合运算;交集及其运算.
考点点评: 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.