以下供参考:
(1).25×4=100,100÷1=100头;
(2).假设每天新生长的牧草数K,刚开始牧草总数A,则有:
(20×K + A)÷15 = 20
(10×K + A)÷20 = 10 ==> 解得:K=10/天,A=100
每头牛每天吃草数B:B = [ (20×K + A)÷15 ]÷20
= 1/天
所以每天新生长的牧草可供牛数:10÷1=10头
(3).同上,假设每天新生长的牧草数K,刚开始牧草总数A,则有:
(6×K + A)÷24 = 6
(8×K + A)÷21 = 8 ==> 解得:K=12/天,A=72
每头牛每天吃草数B:B = [ (6×K + A)÷24 ]÷6
= 1/天
假设需要吃C天,则有:
(C×K + A) = 16×B×C ==>代入并解得:C=18天
(4).同上,假设每天新生长的牧草数K,刚开始牧草总数A,则有:
(20×K + A)÷5 = 20
(15×K + A)÷6 = 15 ==> 解得:K=2/天,A=60
每头牛每天吃草数B:B = [ (20×K + A)÷5]÷20
= 1/天
假设需要D头牛吃六天,则有:
(6×K + A) = D×B×6 ==>代入并解得:D=12头
(5).假设每天衰退的牧草数K,刚开始牧草总数A,则有:
(A - 5×K)÷5 = 20
(A - 6×K)÷6 = 16 ==> 解得:K=4/天,A=120
每头牛每天吃草数B:B = [ (A - 5×K)÷5]÷20
= 1/天
假设需要吃C天,则有:
(A - C×K) = 11×B×C ==>代入并解得:C=8天
(6).同上,假设每天衰退的牧草数K,刚开始牧草总数A,则有:
(A - 8×K)÷8 = 30
(A - 9×K)÷9 = 25 ==> 解得:K=15/天,A=360
每头牛每天吃草数B:B = [ (A - 8×K)÷8]÷30
= 1/天
假设需要吃C天,则有:
(A - C×K) = 21×B×C ==>代入并解得:C=10天
(7).假设每天衰退的牧草数K,刚开始牧草总数A,则有:
(A - 5×K)÷5 = 20
(A - 6×K)÷6 = 15 ==> 解得:K=10/天,A=150
每头牛每天吃草数B:B = [ (A - 5×K)÷5 ]÷20
= 1/天
假设需要D头牛吃十天,则有:
( A - 10×K) = D×B×10 ==>代入并解得:D=5头
小升初数学啊,难以置信,笔者能力有限,只能用方程解决,希望能看得明白吧.