等边△CMN
证明:
∵等边△ABC,△CDE
∴AC=BC,CD=CE,∠ACB=∠DCE=60
∴∠BCD=180-∠ACB-∠DCE=60
∴∠BCD=∠ACB
∵∠ACD=∠ACB+∠BCD=120,∠BCE=∠DCE+∠BCD=120
∴∠ACD=∠BCE
∴△ACD≌△BCE (SAS
∴∠CAD=∠CBE
∴△ACM≌△BCN (ASA)
∴CM=CN
∴等边△CMN
等边△CMN
证明:
∵等边△ABC,△CDE
∴AC=BC,CD=CE,∠ACB=∠DCE=60
∴∠BCD=180-∠ACB-∠DCE=60
∴∠BCD=∠ACB
∵∠ACD=∠ACB+∠BCD=120,∠BCE=∠DCE+∠BCD=120
∴∠ACD=∠BCE
∴△ACD≌△BCE (SAS
∴∠CAD=∠CBE
∴△ACM≌△BCN (ASA)
∴CM=CN
∴等边△CMN