连OE,
1)设AE=x,由题意,得OE=BE,则BE=8-x,
在直角三角形OAE中,由勾股定理,得:
OE^2=OA^2+AE^2,
即(8-x)^2=6^2+x^2,
解得x=7/4,
所以E(6,7/4)
2)对角线OB,AC的交点为M(3,4),
若直线l把矩形OABC的面积分成相等的两部分,直线l必经过点M(3,4)
连OE,
1)设AE=x,由题意,得OE=BE,则BE=8-x,
在直角三角形OAE中,由勾股定理,得:
OE^2=OA^2+AE^2,
即(8-x)^2=6^2+x^2,
解得x=7/4,
所以E(6,7/4)
2)对角线OB,AC的交点为M(3,4),
若直线l把矩形OABC的面积分成相等的两部分,直线l必经过点M(3,4)