构造函数F(x)=x *f(x) ,则F ’(x)=f(x)+x*f ‘(x);
由已知F(1) = 3* [∫(0,1/3) F(x)dx],
又由拉格朗日中值定理可以推出: 比存在t,满足∫(0,1/3) F(x)dx =F(t)*(1/3 -0) 其中t属于(0,1/3).
所以存在t属于(0,1/3),F(t)=F(1).
所以由roll定理:存在§属于(t,1)包含于(0,1),满足F ‘ (§)=0,即结论成立.
构造函数F(x)=x *f(x) ,则F ’(x)=f(x)+x*f ‘(x);
由已知F(1) = 3* [∫(0,1/3) F(x)dx],
又由拉格朗日中值定理可以推出: 比存在t,满足∫(0,1/3) F(x)dx =F(t)*(1/3 -0) 其中t属于(0,1/3).
所以存在t属于(0,1/3),F(t)=F(1).
所以由roll定理:存在§属于(t,1)包含于(0,1),满足F ‘ (§)=0,即结论成立.