由余弦定理得
cosC=(a²+b²-c²)/(2ab)
a²+b²-c²=2abcosC
S=c²-(a-b)²
=c²-a²-b²+2ab
=-(a²+b²-c²)+2ab
=-2abcosC+2ab
=2ab(1-cosC)
又由三角形面积公式得S=(1/2)absinC,因此
(1/2)absinC=2ab(1-cosC)
2(1-cosC)=(1/2)sinC
(1-cosC)/sinC=1/4
由余弦定理得
cosC=(a²+b²-c²)/(2ab)
a²+b²-c²=2abcosC
S=c²-(a-b)²
=c²-a²-b²+2ab
=-(a²+b²-c²)+2ab
=-2abcosC+2ab
=2ab(1-cosC)
又由三角形面积公式得S=(1/2)absinC,因此
(1/2)absinC=2ab(1-cosC)
2(1-cosC)=(1/2)sinC
(1-cosC)/sinC=1/4