1+3+6+.+n(n+1)/2
=1/2[1*2+2*3+3*4+.+n(n+1)]
=1/2{1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3[n(n+1)(n+2)-(n-1)n(n+1)]}
=1/2{1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+.+n(n+1)(n+2)-(n-1)n(n+1)]}
=1/6*n(n+1)(n+2)
所以:和的公式是:S=1/6*n(n+1)(n+2)
1+3+6+.+n(n+1)/2
=1/2[1*2+2*3+3*4+.+n(n+1)]
=1/2{1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3[n(n+1)(n+2)-(n-1)n(n+1)]}
=1/2{1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+.+n(n+1)(n+2)-(n-1)n(n+1)]}
=1/6*n(n+1)(n+2)
所以:和的公式是:S=1/6*n(n+1)(n+2)