∵ AC=BC,得⊿ABC是等腰三角形,由于∠C=90°,两底角都为45°;
AC=AD,得⊿ACD是等腰三角形,由于∠CAD=30°,所以∠ACD=∠ADC=75°
∠DCB=∠DAB=15°
过D点做DE‖AC交AB与E点,∠ADE=∠DAC=30°
证明得⊿ADE与⊿ABD相似,可知∠ABD=∠ADE=30°
则∠DBC=∠ABC-∠ABD=45°-30°=15°=∠DCB
⊿DBC为等腰三角形
∴BD=DC
∵ AC=BC,得⊿ABC是等腰三角形,由于∠C=90°,两底角都为45°;
AC=AD,得⊿ACD是等腰三角形,由于∠CAD=30°,所以∠ACD=∠ADC=75°
∠DCB=∠DAB=15°
过D点做DE‖AC交AB与E点,∠ADE=∠DAC=30°
证明得⊿ADE与⊿ABD相似,可知∠ABD=∠ADE=30°
则∠DBC=∠ABC-∠ABD=45°-30°=15°=∠DCB
⊿DBC为等腰三角形
∴BD=DC