求不定积分∫[1/(1+x^3)]dx

1个回答

  • 1+x^3=(x+1)(x^2-x+1)

    用待定系数法:A/(x+1)+(Bx+c)/(x^2-x+1)=1/(x+1)(x^2-x+1)

    得A=1/3,B=-1/3,C=2/3

    所以∫[1/(1+x^3)]dx =1/3∫(1/(x+1))dx-1/3∫((x-2)/(x^2-x+1))dx

    其中1/3∫(1/(x+1))dx=1/3ln|x+1|+c

    因为d(x^2-x+1)=(2x-1)dx,所以x-2=1/2(2x-1)-3/2

    ∫((x-2)/(x^2-x+1))dx=1/2∫(d(x^2-x+1)/(x^2-x+1))-3/2∫(1/(x^2-x+1))dx

    其中∫(d(x^2-x+1)/(x^2-x+1))=ln|x^2-x+1|+c

    ∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))

    因为∫(dx/(x^2+a^2))=(1/a)arctan(x/a)

    所以∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))

    =(2/根号3)arctan((x-1/2)/(根号3/2))+c

    在乘上系数,整理∫[1/(1+x^3)]dx=1/3ln|x+1|-1/6|x^2-x+1|+(1/根号3)arctan((2x-1)/根号3)+c