相邻数作差可得:6 12 20 30 42 56
2*3 3*4 4*5 5*6 6*7 7*8
可知第n个数是 1*2 + 2*3 + 3*4 + ...+ n*(n+1)
= (1²+1) + (2²+2) + (3²+3) + ...+ (n²+n)
= (1²+2²+3²+...+n²) + (1+2+3+...+n)
= n(n+1)(2n+1)/6 + n(n+1)/2
= [n(n+1)/6] * (2n+1+3)
= n(n+1)(n+2)/3
相邻数作差可得:6 12 20 30 42 56
2*3 3*4 4*5 5*6 6*7 7*8
可知第n个数是 1*2 + 2*3 + 3*4 + ...+ n*(n+1)
= (1²+1) + (2²+2) + (3²+3) + ...+ (n²+n)
= (1²+2²+3²+...+n²) + (1+2+3+...+n)
= n(n+1)(2n+1)/6 + n(n+1)/2
= [n(n+1)/6] * (2n+1+3)
= n(n+1)(n+2)/3