因是正四面体,所以内切球和外接球的球心相同,且圆心为正四面体的内心!
因为是正四面体,可以记公式的!
高:√6a/3.中心把高分为1:3两部分.
表面积:√3a^2 体积:√2a^3/12
外接球半径
内切球半径:√6a/12,
下面我说一下具体解法!
A-BCD来看,记BCD的中心E,则AE垂直于面BCD,那么,球心一定在AE连线上
连BE ,可算出BE=√3*a/3 .再看三角形 ABE ,AE=√6 a/3
记球心为O,
则连BO,由勾股定理知!(AE-AO)^2+BE^2=BO^2
可算出 AO=√6a/4,即R外=AO=√6a/4,
则R内=OE=√6a/12