f(x)=x/(x+1)
f(1/x)=(1/x)/(1/x+1)=1/(x+1)
∴f(x)+f(1/x)=1
f(√1)+f(√2)+f(√3)+...+f(√2012)+f(√1/√2)+f(√1/√3)+...+f(√1/√2012)
=f(√1)+ [(f(√2)+f(1/√2)]+ [(f(√3)+f(1/√3)]+……+ [(f(√2012)+f(1/√2012)]
=1/2+1+1+……+1
=2011+1/2
=2011又1/2
f(x)=x/(x+1)
f(1/x)=(1/x)/(1/x+1)=1/(x+1)
∴f(x)+f(1/x)=1
f(√1)+f(√2)+f(√3)+...+f(√2012)+f(√1/√2)+f(√1/√3)+...+f(√1/√2012)
=f(√1)+ [(f(√2)+f(1/√2)]+ [(f(√3)+f(1/√3)]+……+ [(f(√2012)+f(1/√2012)]
=1/2+1+1+……+1
=2011+1/2
=2011又1/2