过点A作AM垂直AB于点M,
∵∠C=60°,∴CM=b/2,AM=√3b/2
∴(√3b/2)^2+(a-b/2)^2=c^2
a^2-ab+b^2=c^2
b(b+c)+a(a+c)=ab+ac+bc+c^2
b(b+c)+a(a+c)=(a+c)(b+c)
即b/(a+c)+a/(b+c)=1
过点A作AM垂直AB于点M,
∵∠C=60°,∴CM=b/2,AM=√3b/2
∴(√3b/2)^2+(a-b/2)^2=c^2
a^2-ab+b^2=c^2
b(b+c)+a(a+c)=ab+ac+bc+c^2
b(b+c)+a(a+c)=(a+c)(b+c)
即b/(a+c)+a/(b+c)=1