(1)在AC上截取AE=AB,
∴ EC=AC-AE=AB+BD-AB=BD
∵ AD=AD,∠BAD=∠EAD,AB=AE,
∴△BAD≌△EAD,
∴BD=DE,(∠ABD=∠AED),
∴DE=EC,所以∠EDC=∠C
∴∠ABD=∠ABC=∠AED=∠C+∠EDC=2∠C
(1)在AC上截取AE=AB,
∴ EC=AC-AE=AB+BD-AB=BD
∵ AD=AD,∠BAD=∠EAD,AB=AE,
∴△BAD≌△EAD,
∴BD=DE,(∠ABD=∠AED),
∴DE=EC,所以∠EDC=∠C
∴∠ABD=∠ABC=∠AED=∠C+∠EDC=2∠C