这个,感觉,题目是1/(1*4)+ 1/(4*7)+ .+ 1/(3n-2)(3n+1)吧,首先,我们看下,1/1-1/4 = 3/4,1/4 - 1/7 = 3/28,.1/(3n-2)- 1/(3n+1)= 3/(3n-2)(3n+1);所以,我们把原式变成1/3[1/1-1/4+1/4-1/7+.+1/(3n-2)- 1/...
求和:1/1*4+1/4*7+1/7*10+...1/(3n-2)(3n+1)
4个回答
相关问题
-
1/(1*4)+1/(4*7)+1/(7*10)+……+1/[(3n-2)(3n+1)]求和
-
求和:Sn=1-4+7-10+13-16+…+(-1)^n-1(3n-2)
-
求和:1/1*4 + 1/4*7 +.+1/(3n-2)(3n+1),怎么算?
-
求和1+1+1/2+4+1/2^2+7……+1/2^n-1+3n-2
-
数列1+1/2,2+3/4,3+7/8……+n+((2^n)-1)/2^n)求和
-
数列求和Sn=1/1*3+4/3*5+9/5*7+……n^2/(2n-1)(2n+1)
-
求和:Sn=(1/3*5)+(1/5*7)+(1/7*9)+...+[1/(2n+1)(2n+3)]
-
求和:S=1/2+3/4+5/8+7/16+.+(2n-1)/2^n
-
数列求和:1/2+3/4+5/8+7/16+.+(2n-1)/(2^n)
-
2/1*4+2/4*7+2/7*10+2/10*13+.+2/(3n-2)(3n+1)