m·n=(-1,√3)·(cosA,sinA)
=√3sinA-cosA
=2sin(A-π/6)=1
即:sin(A-π/6)=1/2
A是内角,故:A∈(0,π)
即:A-π/6∈(-π/6,5π/6)
故:A-π/6=π/6
即:A=π/3
(1+sin(2B))/(cosB^2-sinB^2)
=(sinB+cosB)^2/((cosB+sinB)(cosB-sinB))
=(sinB+cosB)/(cosB-sinB)
=(tanB+1)/(1-tanB)=-3
即:tanB+1=-3+3tanB
即:tanB=2