解题思路:由Rt△ABC中,AC=3,BC=4,可求得AB的长,然后由CA1⊥AB,利用三角形的面积可得,直角三角形斜边上的高等于直角边相乘除以斜边,即可求得CA1的长,然后由三角形函数的性质,求得
C
n
A
n+1
A
n
C
n
(其中n为正整数)的值.
∵Rt△ABC中,AC=3,BC=4,
∴AB=
AC2+BC2=5,
∵CA1⊥AB,
∴CA1=[AC•BC/AB]=[12/5],cos∠B=[AC/AB]=[4/5],
∵A1C1⊥BC,
∴∠CA1B=∠A1C1B=90°,
∴∠CA1C1+∠A1CB=∠B+∠A1CB=90°,
∴∠CA1C1=∠B,
同理:∠AnCnAn+1=∠B,
∴cos∠AnCnAn+1=
CnAn+1
AnCn=[4/5].
故答案为:[12/5],[4/5].
点评:
本题考点: 相似三角形的判定与性质.
考点点评: 此题考查了直角三角形的性质以及三角函数等知识.此题难度适中,注意得到∠AnCnAn+1=∠B是解此题的关键.