求x.e^x/(e^x-1)^1/2的积分

1个回答

  • ∫x.e^x/ √(e^x-1) dx

    = 2∫ xd√(e^x-1)

    = 2x√(e^x-1) - 2 ∫ √(e^x-1) dx

    let

    e^(x/2) = seca

    (1/2)e^(x/2) dx = (tana)^2 da

    dx = 2(tana)^2/(seca) da

    ∫ √(e^x-1) dx

    = ∫ tana [2(tana)^2/(seca) ]da

    =2 ∫ (sina)^3/(cosa)^2 da

    = -2∫ (1-(cosa)^2) / (cosa) ^2 dcosa

    = 2 [ 1/cosa + cosa ] + C'

    = 2[ e^(x/2) + e^(-x/2) ] + C'

    ∫x.e^x/ √(e^x-1) dx

    = 2x√(e^x-1) - 2 ∫ √(e^x-1) dx

    = 2x√(e^x-1) - 4 [ e^(x/2) + e^(-x/2) ] + C