(1)
F1P(3+c,1),F2P(3-c,1)
9-c^2+1=-6
c=4
9/a^2+1/(a^2-16)=1
解得:a^2=18或8(舍)
x^2/18+y^2/2=1
(2)设M点坐标为(5,m),N点坐标为(5,n)
F1M(9,m); F2N(1,n)
F1M*F2N=0
mn=-9
圆的方程为:(x-5)^2+[y-(m+n)/2]^2=(m-n)^2/4
即:x^2-10x+25+y^2+(m+n)y+mn=0
因为mn=-9,方程为:x^2-10x+16+y^2+(m+n)y=0
若x^2-10x+16=0并且y=0,该等式恒成立.
所以圆过定点(2,0)和(8,0)