从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只能游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有几种?
分三种情况:情况一:不选甲、乙两个去游览,则有4×3×2×1=24(种)选择方案.
情况二:甲、乙中有一人去游览,又需分四步完成,第一步,从甲、乙中选一人,有2种选法;第二步,从去掉巴黎的三个城市选一个城市让上一步选出的甲或乙去,有3种选法;第三步,从去掉甲、乙后的4人中选出3人,有4种选法;第四步,把这3人分配到剩余的三个城市去,有3×2×1=6(种)方法.因此,第二种情况有2×3×4×6=144(种)选择方案.
情况三:甲、乙两人都去游览,又需分三步完成,第一步,从去掉巴黎的三个城市选2个城市,分别安排甲、乙去游览,有3×2=6(种)方法;第二步,从去掉甲、乙后的4人中选出2人,有6种选法;第三步,把这2人分配到剩余的2个城市去,有2种方法.因此,第三种情况有6×6×2=72(种)选择方案.
综上,不同的选择方案共有24+144+72=240(种).