若函数y=log2(x2-2ax+a)的值域为R,则实数a的取值范围是(  )

3个回答

  • 解题思路:令f(x)=x2-2ax+a,由题意函数的值域为R,则可得f(x)可以取所有的正数可得,△=4a2-4a≥0,解不等式可求

    令f(x)=x2-2ax+a

    由题意函数的值域为R,则可得f(x)可以取所有的正数

    ∴△=4a2-4a≥0

    ∴a≥1或a≤0

    故选:D

    点评:

    本题考点: 对数函数的值域与最值.

    考点点评: 本题主要考查了由二次函数与对数函数复合的复合函数,解题的关键是要熟悉对数函数的性质,解题时容易误认为△<0,要注意区别与函数的定义域为R的限制条件.