解题思路:令f(x)=x2-2ax+a,由题意函数的值域为R,则可得f(x)可以取所有的正数可得,△=4a2-4a≥0,解不等式可求
令f(x)=x2-2ax+a
由题意函数的值域为R,则可得f(x)可以取所有的正数
∴△=4a2-4a≥0
∴a≥1或a≤0
故选:D
点评:
本题考点: 对数函数的值域与最值.
考点点评: 本题主要考查了由二次函数与对数函数复合的复合函数,解题的关键是要熟悉对数函数的性质,解题时容易误认为△<0,要注意区别与函数的定义域为R的限制条件.
解题思路:令f(x)=x2-2ax+a,由题意函数的值域为R,则可得f(x)可以取所有的正数可得,△=4a2-4a≥0,解不等式可求
令f(x)=x2-2ax+a
由题意函数的值域为R,则可得f(x)可以取所有的正数
∴△=4a2-4a≥0
∴a≥1或a≤0
故选:D
点评:
本题考点: 对数函数的值域与最值.
考点点评: 本题主要考查了由二次函数与对数函数复合的复合函数,解题的关键是要熟悉对数函数的性质,解题时容易误认为△<0,要注意区别与函数的定义域为R的限制条件.