求不定积分:∫sinx/(1+sinx)dx ∫(x+1)/(x^2+1)^2dx ∫dx/(3sinx+4cosx)

1个回答

  • 1.原式

    =∫(1+sinx-1)/(1+sinx)dx

    =∫1-1/(1+sinx)dx

    =∫1-1/(1+cos(x-π/2))dx

    由cos2t=2(cost)^2-1可得:

    =∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx

    =∫1-1/2cos(x/2-π/4)^2 dx

    =x-tan(x/2-π/4)+C

    化简得:

    =x+cosx/(1+sinx)+C

    2.分作2部分,前面一部分是∫x/(x²+1)²dx=1/2∫1/(x²+1)²d(x²+1)=1/2ln(x²+1)

    后面一部分,∫1/(x²+1)²dx设X=TAN T,则,∫1/(x²+1)²dx=∫cos²tdt=1/4sin2t+t/2=x/2(x²+1)+1/2arctanx

    两部分加起来,原式=1/2ln(x²+1)+x/2(x²+1)+1/2arctanx+C