1.原式
=∫(1+sinx-1)/(1+sinx)dx
=∫1-1/(1+sinx)dx
=∫1-1/(1+cos(x-π/2))dx
由cos2t=2(cost)^2-1可得:
=∫1-1/(1+2[cos(x/2-π/4)]^2-1)dx
=∫1-1/2cos(x/2-π/4)^2 dx
=x-tan(x/2-π/4)+C
化简得:
=x+cosx/(1+sinx)+C
2.分作2部分,前面一部分是∫x/(x²+1)²dx=1/2∫1/(x²+1)²d(x²+1)=1/2ln(x²+1)
后面一部分,∫1/(x²+1)²dx设X=TAN T,则,∫1/(x²+1)²dx=∫cos²tdt=1/4sin2t+t/2=x/2(x²+1)+1/2arctanx
两部分加起来,原式=1/2ln(x²+1)+x/2(x²+1)+1/2arctanx+C