AD+CE=AC.
证明:∠B=60°,则∠BAC+∠BCA=120°.
AE,CD均为角平分线,则∠OAC+∠OCA=60°=∠AOD=∠COE,∠AOC=120°.
在AC上截取AF=AD,连接OF.又AO=AO;∠DAO=∠FAO.
∴ ⊿DAO≌⊿FAO(SAS),∠AOF=∠AOD=60°.
故∠COF=60°=∠COE;又OC=OC,∠ECO=∠FCO.
∴ ⊿ECO≌⊿FCO(ASA),CF=CE.
所以,AD+CE=AF+CF=AC.
AD+CE=AC.
证明:∠B=60°,则∠BAC+∠BCA=120°.
AE,CD均为角平分线,则∠OAC+∠OCA=60°=∠AOD=∠COE,∠AOC=120°.
在AC上截取AF=AD,连接OF.又AO=AO;∠DAO=∠FAO.
∴ ⊿DAO≌⊿FAO(SAS),∠AOF=∠AOD=60°.
故∠COF=60°=∠COE;又OC=OC,∠ECO=∠FCO.
∴ ⊿ECO≌⊿FCO(ASA),CF=CE.
所以,AD+CE=AF+CF=AC.