解由f(x)=(1/2)x^2+lnx-1
得f'(x)=x+1/x
当x属于区间[1,e]时,
f'(x)>0
即函数fx在区间[1,e]上是增函数
故当x=1时,y有最小值f(1)=1/2+ln1-1=-1/2
当x=e时,y有最大值f(e)=1/2e^2+lne-1=1/2e^2
解由f(x)=(1/2)x^2+lnx-1
得f'(x)=x+1/x
当x属于区间[1,e]时,
f'(x)>0
即函数fx在区间[1,e]上是增函数
故当x=1时,y有最小值f(1)=1/2+ln1-1=-1/2
当x=e时,y有最大值f(e)=1/2e^2+lne-1=1/2e^2