f(x)=a^2-ab
=(sinx)^2+(sinx)^2-sinxcosx-(sinx)^2
=(sinx)^2-sinxcosx
=(1/2)(1-cos2x)-(1/2)sin2x
= - (1/2)(sin2x+cos2x)+(1/2)
= - (√2/2)sin(2x+π/4)+(1/2)
f(max)=(1/2)+(√2/2)
f(min)=(1/2)-(√2/2)
f(x)=a^2-ab
=(sinx)^2+(sinx)^2-sinxcosx-(sinx)^2
=(sinx)^2-sinxcosx
=(1/2)(1-cos2x)-(1/2)sin2x
= - (1/2)(sin2x+cos2x)+(1/2)
= - (√2/2)sin(2x+π/4)+(1/2)
f(max)=(1/2)+(√2/2)
f(min)=(1/2)-(√2/2)