应该是f(a,b,c)=1/(a+b)+1/(b+c)+1/(a+c)>=(3/2)根号3
f(a,b,c)=1/(a+b)+1/(b+c)+1/(a+c)=(ab+bc+ca)[1/(a+b)+1/(b+c)+1/(a+c)]=
a+b+c+[ab/(a+b)]++[ac/(a+c)]++[bc/(b+c)]
先证明a+b+c>=根号3,(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac≥3(ab+bc+ca)=3,所以a+b+c>=根号3.同理可证[ab/(a+b)]>=(根号3)/6,[ac/(a+c)]>=(根号3)/6,
[bc/(b+c)]>=(根号3)/6,上述等号成立的前提是a=b=c=(根号3)/3,
综上所述,f(a,b,c)=1/(a+b)+1/(b+c)+1/(a+c)>=(3/2)根号3
即f(a,b,c)=1/(a+b)+1/(b+c)+1/(a+c)>5/2,其中5/2不可取.