每条直线与两轴交点为(0,√2/(n+1))和(√2/n,0)
则Sn=[√2/(n+1)*√2/n]/2=1/[n(n+1)]=(1/n)-1/(n+1)
则S1+S2+……+S2000=1/1-(1/2)+(1/2)-(1/3)+……+1/2000-(1/2001)=1-1/2001=2000/2001
每条直线与两轴交点为(0,√2/(n+1))和(√2/n,0)
则Sn=[√2/(n+1)*√2/n]/2=1/[n(n+1)]=(1/n)-1/(n+1)
则S1+S2+……+S2000=1/1-(1/2)+(1/2)-(1/3)+……+1/2000-(1/2001)=1-1/2001=2000/2001