令f(x)=(secx)^2/(1+x^2)
f'(x)={[(secx)^2]'*(1+x^2)-(secx)^2*(1+x^2)'}/(1+x^2)^2
={[(cosx)^(-2)]'*(1+x^2)-(cosx)^(-2)*(1+x^2)'}/(1+x^2)^2
={[-2(cosx)^(-3)*(-sinx)]*(1+x^2)-(cosx)^(-2)*(2x)}/(1+x^2)^2
={[-2(cosx)^(-3)*(-sinx)]*(1+x^2)-(cosx)^(-2)*(2x)}/(1+x^2)^2
=2[sinx(1+x^2)-xcosx]/[(cosx)^3*(1+x^2)^2]
当x=π/4时,sinπ/4=cosπ/4=√2/2,则
f'(π/4)=√2[x^2-x+1]/[√2/4*(1+x^2)^2]
=4[x^2-x+1]/(1+x^2)^2(x=π/4)