解题思路:首先判定该四边形是平行四边形,然后利用邻边相等的平行四边形是菱形判定菱形即可.
证明:∵∠C=90°,ED⊥BC交AB于E,
∴DE∥AC,
∵DF∥AB,
∴四边形AEDF为平行四边形.
AD平分∠BAC,
∴∠EAD=∠FAD.
又∵AEDF为平行四边形,
∴∠FAD=∠ADE,
∴AE=ED,
∴四边形AEDF是菱形.
点评:
本题考点: 菱形的判定.
考点点评: 此题考查了菱形的判定,熟记菱形的判定定理是解答本题的关键,本题应用了邻边相等的平行四边形是菱形判定.
解题思路:首先判定该四边形是平行四边形,然后利用邻边相等的平行四边形是菱形判定菱形即可.
证明:∵∠C=90°,ED⊥BC交AB于E,
∴DE∥AC,
∵DF∥AB,
∴四边形AEDF为平行四边形.
AD平分∠BAC,
∴∠EAD=∠FAD.
又∵AEDF为平行四边形,
∴∠FAD=∠ADE,
∴AE=ED,
∴四边形AEDF是菱形.
点评:
本题考点: 菱形的判定.
考点点评: 此题考查了菱形的判定,熟记菱形的判定定理是解答本题的关键,本题应用了邻边相等的平行四边形是菱形判定.