√6x^2-x-2√6=0;(x+2)^2-2x-3=0;4x^2-√2x-1=0;配方法解

1个回答

  • √6x²-x-2√6=0

    设√6=y²,则有

    y²x²-x-2y²=0

    (yx)²-2(yx×1/y)+(1/y)²-(1+2y^4)/y²=0

    (yx-1/y)²-[√(1+2y^4)/y]²=0

    (yx-1/y)²=[√(1+2y^4)/y]²

    yx-1/y=√(1+2y^4)/y

    y²x/y-1/y=√(1+2y^4)/y

    (y²x-1)/y=√(1+2y^4)/y

    y²x-1=√(1+2y^4)

    y²x=[√(1+2y^4)]+1

    √6x=[√(1+2×6)]+1 (√6=y²)

    √6x=√13+1

    x=(√13+1 )/√6

    (x+2)²-2x-3=0

    (x+2)²-2x-4+1=0

    (x+2)²-2(x+2)+1=0

    [(x+2)+1]²=0

    (x+2)+1=0

    x+3=0

    x=-3

    4x²-√2x-1=0

    (2x)²-√2x+1/8-9/8=0

    (2x)²-√2x+2/16-9/8=0

    (2x)²-√2x+(√2/4)²-9/8=0

    (2x)²-2(2x×√2/4)+(√2/4)²-(3²/√8²)=0

    (2x-√2/4)²-(3/2√2)²=0

    (2x-√2/4)²=(3/2√2)²

    2x-√2/4=3/2√2

    2x=3/2√2+√2/4

    2x=6/4√2+√2²/4√2

    2x=8/4√2

    x=1/√2