①
√6x²-x-2√6=0
设√6=y²,则有
y²x²-x-2y²=0
(yx)²-2(yx×1/y)+(1/y)²-(1+2y^4)/y²=0
(yx-1/y)²-[√(1+2y^4)/y]²=0
(yx-1/y)²=[√(1+2y^4)/y]²
yx-1/y=√(1+2y^4)/y
y²x/y-1/y=√(1+2y^4)/y
(y²x-1)/y=√(1+2y^4)/y
y²x-1=√(1+2y^4)
y²x=[√(1+2y^4)]+1
√6x=[√(1+2×6)]+1 (√6=y²)
√6x=√13+1
x=(√13+1 )/√6
②
(x+2)²-2x-3=0
(x+2)²-2x-4+1=0
(x+2)²-2(x+2)+1=0
[(x+2)+1]²=0
(x+2)+1=0
x+3=0
x=-3
③
4x²-√2x-1=0
(2x)²-√2x+1/8-9/8=0
(2x)²-√2x+2/16-9/8=0
(2x)²-√2x+(√2/4)²-9/8=0
(2x)²-2(2x×√2/4)+(√2/4)²-(3²/√8²)=0
(2x-√2/4)²-(3/2√2)²=0
(2x-√2/4)²=(3/2√2)²
2x-√2/4=3/2√2
2x=3/2√2+√2/4
2x=6/4√2+√2²/4√2
2x=8/4√2
x=1/√2