解题思路:(1)因为MN∥BC,所以△AMN∽△ABC,所以根据相似三角形的性质即可求得MN的值与MN边上的高的值,即可求得面积;
(2)根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=[1/2]AB=2时,点P恰好落在边BC上;
(3)分两种情况讨论:①当0<x≤2时,易见y=[3/8]x2.(8分)
②当2<x<4时,如图3,设PM,PN分别交BC于E,F
由(2)知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4
由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.
(1)S△AMN=38x2(3);(2)如图2,由轴对称性质知:AM=PM,∠AMN=∠PMN,(4分)又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,(5)∴∠B=∠BPM∴AM=PM=BM(6分)∴点M是AB中点,即当x=12AB=2时,点P恰好落在边BC上.(7...
点评:
本题考点: 二次函数综合题.
考点点评: 此题考查了折叠问题,要注意对应的线段对应的角相等,此题还考查了相似三角形的性质,解题的关键是数形结合思想的应用.