解
psin(θ+π/4)=√2
psinθcosπ/4+pcosθsinπ/4=√2
∴1/2y+1/2x=1
即x+y-2=0
A(2,7π/4)化为直角坐标系
x=2×cos7π/4=-2×(√2/2)=√2
y=2×sin7π/4=2×(√2/2)=-√2
即(√2,-√2)到直线x+y-2=0的距离
d=|√2-√2-2|/√1+1
=2/√2
=√2
解
psin(θ+π/4)=√2
psinθcosπ/4+pcosθsinπ/4=√2
∴1/2y+1/2x=1
即x+y-2=0
A(2,7π/4)化为直角坐标系
x=2×cos7π/4=-2×(√2/2)=√2
y=2×sin7π/4=2×(√2/2)=-√2
即(√2,-√2)到直线x+y-2=0的距离
d=|√2-√2-2|/√1+1
=2/√2
=√2