解题思路:(1)利用导数,确定函数的单调性,从而确定函数f(x)的最小值;
(2)先求导函数,再分别考虑导数大于0与小于0,分类讨论即可.当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
(1)a=0时,f′(x)=
x−1
x2…..(2分)
当0<x<1时f'(x)<0,
当x>1时f'(x)>0,…..(5分)
∴f(x)min=f(1)=1….(7分)
(2)f′(x)=
1
x−
1
x2+a=
ax2+x−1
x2
当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求;…(10分)
当a<0时,令g(x)=ax2+x-1,g (x)在[2,+∞)上只能恒小于零
故△=1+4a≤0或
1+4a>0
g(2)≤0
−
1
2a≤2,解得:a≤−
1
4
∴a的取值范围是(−∞,−
1
4]∪[0,+∞)…(14分)
点评:
本题考点: 导数在最大值、最小值问题中的应用.
考点点评: 本题以函数为载体,考查导函数,考查函数的单调性,注意分类讨论.