1.在△ABC中,延长AB到E,使BE=BD,则AE=AB+BD.在AC边上取点F,使CF=CD,则AF=AC-CD. 连结ED,FD.只要能证明△AED与△ADF相似就可以了.
在△AED与△ADF中,∠EAD=∠DAF=∠A/2;
∠CDF+∠CFD=180°-∠C=∠A+∠B,即∠CFD=(∠A+∠B)/2;
∴∠ADF=∠CFD-∠A/2=(∠A+∠B)/2-∠A/2=∠B/2=∠AED;
∴△AED∽△ADF,则AE/AD=AD/AF
即 AD²=AE×AF=(AB+BD)(AC-CD)=AB*AC-AB*CD+AC*BD-BD*CD;
又AB/AC=BD/CD===>AC*BD-AB*CD=0.∴AB*AC-BD*CD=AD²
2.c/b=BD/CD===>(b+c)/b=(BD+CD)/CD=a/CD===>CD=ab/(b+c);同理:BD=ac/(b+c)
∴AD²=cb-a²bc/(b+c)²===>AD=√{bc[1-a²/(b+c)²]}