已知z(1,0)=1,f(1,1)=0,f(xz,x+y)=0两边对x,y求导,分别可得(上下标不难区分)
fu*(z+x*zx)+fv*1=0;fu*x*zy+fv*1=0.代入(1,0)得zy=-fv/fu,zx=-(fu+fv)/fu,故
grad z(1,0)=(zx,zy)=(-(fu+fv)/fu,-fv/fu)其中fu,fv在(1,1)取值.
已知z(1,0)=1,f(1,1)=0,f(xz,x+y)=0两边对x,y求导,分别可得(上下标不难区分)
fu*(z+x*zx)+fv*1=0;fu*x*zy+fv*1=0.代入(1,0)得zy=-fv/fu,zx=-(fu+fv)/fu,故
grad z(1,0)=(zx,zy)=(-(fu+fv)/fu,-fv/fu)其中fu,fv在(1,1)取值.